

Resilient Hearts: Measuring Resiliency In Young People With Congenital Heart Disease Using Social Media

Thomas Glenna, Melissa K. Cousinoa, Gil Wernovskyb, Eleanor L. Schuchardte

^aCongenital Heart Center, Department of Pediatrics and Cardiac Surgery, University of Michigan, Ann Arbor, MI, USA bCardiac Critical Care and Pediatric Cardiology, Children's National Medical Center and George Washington University School of Medicine and Health Sciences, Washington DC, USA ^cRady Children's Hospital Heart Institute, Department of Pediatrics, University of California San Diego, USA

Prior mental Health

Rack	aroi	ını

- Congenital heart disease (CHD) is a life-long illness with significant burden on a patient's physical and mental health.
- CHD patients will face a variety of psychosocial challenges as they mature into adulthood.
- Resiliency is the ability to thrive in the face of adversity and can positively impact mental health.
- Higher resiliency is associated with better transition readiness and better mental health outcomes.
- The SARS-CoV-2 pandemic has negatively impacted many aspects of mental health for young people.

Methods

- The primary outcome was to compare the resilience of individuals with and without CHD
- Prospective observational study of individuals, 10-25 years old, with and without CHD using social media. Survey distribution was in early 2022.
- Participants were identified through groups on Facebook, Instagram, Reddit, and Twitter.
- Demographics were self-reported: individuals with CHD answered additional diagnosis-specific questions. All participants completed the 25-item Connor-
- Davidson Resilience Scale (CD-RISC): a validated tool to measure resiliency, and scores patients from 0 (least resilient) to 100 (most resilient).
- Normative pre-pandemic data for the CD-RISC reports a mean score in the US general population of 80.7.
- Data reported in mean and standard deviation: comparisons used t-tests, U-tests, ANOVA, and Kruskal-Wallis tests.

Results . A total of 332 individuals with CHD and 134 individuals without CHD completed the

survey.

 The two groups were comparable however the individuals without CHD were significantly older (20.4 ± 3.4 versus 17.2 ± 5.1. p < 0.001).

Table 1 Overall resilience scores for CHD and non-CHD nationts

CHD Resilience	Non-CHD Resilience	
(Mean ± SD)	(Mean ± SD)	p-value
65.3 ± 16.1	55.4 ± 13.8	<0.001

Table 2. Resiliency scores for study participants							
Variable		CHD Resilience		No	Non-CHD Resilience		
		n	(Mean ± SD)	<i>p</i> - value	n	(Mean ± SD)	<i>p-</i> value
Gender	Male Female Non-binary	174	64.4 ± 16.1 66.6 ± 16.0 53.6 ± 6.4	0.12	75	53.3 ± 14.5 57.4 ± 12.7 51.5 ± 16.2	0.4
Race	White Non-white		65.5 ± 15.8 64.1 ± 17.4	0.5		55.9 ± 14.2 55.0 ± 12.8	0.4
Age	. , .		65.7 ± 15.5 64.9 ± 16.6	0.6		55.5 ± 13.4 54.7 ± 15.5	0.8

Results

Table 3. Resilience scores among CHD participants Variable Resilience Vec(n = 190)

(Mean ± SD) p-value

Prior mental Health	res (n = 190)	61./ ± 15./	<0.001	introduced sample bias.					
comorbidity	No (n = 140)	70.0 ± 15.5	~0.001	The demographics of our study sample did not					
Frequent exercise	Yes (n = 195)	68.6 ± 15.5	<0.001	accurately represent that of the general					
	No (n = 137)	60.6 ± 15.8		population.					
CHD camp or	Yes (n = 125)	68.5 ± 13.4	0.002	Findings may be different with alternative					
support group	No (n = 207)	63.3 ± 17.2	0.002	, ,					
Family structure	Married (n = 217)	67.0 ± 15.7	0.004	patient recruitment strategies.					
	All other (n = 87)	60.3 ± 16.4							
# of hospitalizations in last year	0 (n = 222)	66.7 ± 15.7	0.005	Conclusions					
	1 (n = 63)	65.7 ± 15.1							
	2+ (n = 45)	58.0 ± 17.1		Resilience scores in both groups were lower					
Communicating with	Yes (n = 265)	66.3 ± 14.7	0.05	compared to pre-pandemic historic norms.					
other CHD patients	No (n = 67)	61.1 ± 20.3	0.05	Young people with CHD scored higher than th					
Disease severity	Low (n = 21)	61.6 ± 17.1	0.2	comparison group on the CD-RISC, suggesting better					
	Moderate (n = 89)	67.1 ± 15.4		resilience.					
	High (n = 222)	64.9 ± 16.2		Resiliency scores were not different across race, age,					
	,			and gender in both the CHD and comparison group.					
Fontan physiology	Yes (n = 147)	65.1 ± 16.4	0.7	In the CHD group, married family structure was					
Tontan physiology	No (n = 150)	65.6 ± 15.2	0.7	associated with better resilience.					
Neonatal surgery	Yes $(n = 225)$	65.4 ± 16.4	0.8	Disease severity, Fontan physiology, history of					
	No (n = 104)	64.9 ± 15.5		neonatal surgery, and transplantation were not					
Formal transplant	Yes (n = 35)	62.5 ± 16.8	0.3	associated with any difference in resiliency.					
evaluation	No (n = 281)	65.9 ± 16.0	0.5	In the CHD group, no formal mental health					
Cardiac transplant	Yes (n = 11)	66.0 ± 9.79	0.8	comorbidity, frequent exercise, fewer					
	No (n = 321)	65.3 ± 16.2		hospitalizations, and attendance at CHD camps or					
# of cardiac meds per day	0 (n = 99)	67.7 ± 15.0	0.2	support groups was associated with higher resilience.					
	1-2 (n = 148)	64.5 ± 16.7		0.2	Future studies should expand to outpatient clinics to				
	3+ (n = 85)	63.9 ± 16.0		achieve a more diverse sample and avoid volunteer					

Study Limitations

- The precise impact of the SARS-CoV-2 pandemic on our findings is difficult to determine. Internet patient recruitment may have introduced sample bias.
- accurately represent that of the general population. Findings may be different with alternative
- patient recruitment strategies.

Conclusions

- Resilience scores in both groups were lower compared to pre-pandemic historic norms. oung people with CHD scored higher than the
- resilience.
- Resiliency scores were not different across race, age,
- and gender in both the CHD and comparison group. In the CHD group, married family structure was
- associated with better resilience Disease severity, Fontan physiology, history of
- ssociated with any difference in resiliency. n the CHD group, no formal mental health omorbidity, frequent exercise,
- nospitalizations, and attendance at CHD camps or support groups was associated with higher resilience. uture studies should expand to outpatient clinics to

bias.

achieve a more diverse sample and avoid volunteer

Disclosures: None